| Peer-Reviewed

Theranostic Agent Study for Cancer Treatment by the TDDFT Method: Case of Some Ruthenium Azopyridine Complexes

Received: 21 August 2022    Accepted: 6 September 2022    Published: 19 September 2022
Views:       Downloads:
Abstract

The interest of ruthenium azopyridine complexes lies in the diversity of their properties. The use of these complexes in this work is part of the dynamics to fight against cancer. The main objective is to show by Density Functional Theory (DFT) method the possibility of using these complexes in the diagnosis and treatment of cancers. Optimization, frequency calculation and properties of the β and d isomers of these azopyridine complexes were determined using DFT and TDDFT methods at the B3LYP/Lanl2DZ level. The results of this analysis show on the one hand that the most cytotoxic isomers by mode of intercalation between DNA base pairs are the δ-RuCl2 (Azpy)2 and δ-RuCl2 (Nazpy)2. The free enthalpy of reaction values indicate that the substitution of the phenyl group by the naphthol group changes the stability of these azopyridine complexes. In terms of reactivity, it can be said that the substitution decreases the nucleophilicity and increases the electrophilicity of these ruthenium azopyridine complexes. The Nazpy isomers are the most soluble in organic solvents. On the other hand, Nazpy isomers were discovered the best complexes suitable for diagnostic and deep penetration treatments. Furthermore, the substitution of the phenyl group by the naphthol group improves the cytotoxicity and fluorescence properties of these complexes. Therefore, for the subsequent work, we would like to extend this study to the elucidation of the mechanism of photodynamic therapy regarding these Nazpy ruthenium complexes.

Published in Modern Chemistry (Volume 10, Issue 3)
DOI 10.11648/j.mc.20221003.12
Page(s) 74-85
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Azopyridine, Cancer, TDDFT, Theranostic

References
[1] Y. T. Hun, H. Y. Chai, H. Yin, M. Molly, K. Azahari, N. M. S. Mohamad et C. P.,. Alan, « Neutron-activated theranostic radionuclides for nuclear medicine,» Nuclear Medicine and Biology, vol., p. 55–68, 2020.
[2] S. Shrivastava, S. Jain, D. Kumar, S. L. Soni et M. A. Sharma, «Review on - Theranostics: An Approach To Targeted Diagnosis And Therapy;,» Asian Journal of Pharmaceutical Research and Development;, vol. 7, n° %12, pp: 63-69, 2019.
[3] R. Werner, T. Higuchi, M. Pomper et S. Rowe, «Theranostics in Oncology—Thriving, Now More than Ever.,» Diagnostics, vol. 11, p. 805, 2021.
[4] J. Strosberg, G. El-Haddad, E. Wolin, A. Hendifar, J. Yao, B. Chasen, E. Mittra, P. Kunz, M. Kulke et H. Jacene, «Phase3 Trial of (177) Lu-Dotatate for Midgut Neuroendocrine Tumors.,» N. Engl. J. Med., vol. 125–135, p. 376, 2017.
[5] M. Hofman, J. Violet, R. Hicks, J. Ferdinandus, S. Thang, T. Akhurst, A. Iravani, G. Kong, A. Ravi Kumar et D. Murphy, «[(177)Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): A single-centre, single-arm, phase 2 study.,» Lancet Oncol., vol. 825–833, p. 19, 2018.
[6] M. Hofman, L. Emmett, S. Sandhu, A. Iravani, A. Joshua, J. Goh, D. Pattison, T. Tan, I. Kirkwood et S. Ng, «[(177)Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate canceropen-label, phase 2 trial. (TheraP): A randomised,» Lancet, vol. 397, p. 797–804., 2021.
[7] Q. Bessi, D. Alexandria, M. Matthew et R. S. Myron, «In Developments in Biomedical Engineering and Bioelectronics, Drug Delivery Devices and Therapeutic Systems,» pp. 423-454, 2021.
[8] K. N. Nobel, B. Kafoumba, O. W. Patrice et Z. Nahossé, «DSSCs Theoretical Investigation of Structural and Electronic Properties of Ruthenium Azopyridine Complexes Dyes for Photovoltaic Applications by Using DFT and TD-DFT Methods,» European Scientific Journal edition, vol. 14, n° %121, p. 1857 – 7881, 2018.
[9] O. W. Patrice, B. Kafoumba, N. K. Nobel, K. M. G.,. G.,. K. C. Richard et Z. Nahosse, «Effect of Metal on the Properties of the Azopyridine Complexes of Iron, Ruthenium and Osmium;,» Asian Journal of Applied Chemistry Research, vol. 3, pp. 1-16, 2019.
[10] B. A. Sava G, «Influence of chemical stability on the activity of the antimetastasis ruthenium compound,» vol. 38:, p. 427–435., 2002.
[11] A. Bergamo, «Modulation of the metastatic progression of breast cancer with an organometallic ruthenium compound..,» Int. J. Oncol., vol. 33, p. 1281–1289., 2008.
[12] B. McGhie et J. Aldrich- Wright, «Photoactive and Luminescent Transition Metal Complexes as Anticancer Agents: A Guiding Light in the Search for New and Improved Cancer Treatments.,» Biomedicines, vol. 10, p. 578., 2022.
[13] K. Bamba, O. W. Patrice, N. K. Nobel et N. Ziao, «SARs investigation of α-, β-, γ-, δ-, ε- RuCl2(Azpy)2 complexes as Antitumor drugs.,» Computational Chemistry, vol. 4, pp. 1-10, 2015.
[14] R. A. Krause et K. Krause, Inorg. Chem., vol. 19, pp. 2600-2603., 1980.
[15] O. Wawohinlin Patrice, "Theoretical evaluation of the impact of transition metal and substitution of ligands on the anticancer, photodynamic and fluorescence properties of azopyridine complexes, PhD, memory of the University of NANGUI ABROGOUA, Abidjan, 2021.
[16] M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman et G. Scalmani, «V. Barone, B. Mennucci, G. Petersson, H. Nakatsuji, M. Caricato et X. Li, «M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M., M. Ishida, T. Nakajima, Y. Honda,» O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta,» F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. KobayashiJ. Fox, Gaussian 09 (Gaussian, Inc., Pittsburgh, PA, )., 1995–2011.
[17] A. Becke, "A new mixture of Hartree-Fock and local theoretical density functional," J. Chem. Phys. vol. 98, pp. 1372-77, 1993.
[18] G. Andreas, "Density functional theory for excited states," Phys. Rev. A 54, p. 3912, 1996.
[19] J. Foresman et Æ. Frisch, «Exploring Chemistry with Electronic Structure Methods,» second ed., Gaussian Inc., Pittsburgh, PA, 1996.
[20] P. Hohenberg and W. Kohn, "Inhomogeneous electron gas;," Phys. Rev. B., vol. 136, p. 864, 1964.
[21] R. Willard, P. Wadt, and H. Jeffrey, "Ab initio effective core potentials for molecular calculations. Potentials for the main group elements Na to Bi," J. Chem. Phys. vol. 82, p. 284, 1985.
[22] PJ Hay and WR Wadt, ""Ab initio effective core potentials for molecular calculations - potentials from K to Au, including the outermost core orbitals"," J. Chem. Phys, vol. 82, pp. 299-310, 1985.
[23] E. Runge et E. K. Gross, « Density-functional theory for time dependent systems.,» Physical Review Letters, vol. 12, n° %152, p. 997, 1984.
[24] A. D. Laurent, C. Adamo et D. Jacquemin, «Dye chemistry with timedependent density functional theory.,» Physical Chemistry Chemical Physics, vol. 16, n° %128, pp. 14334-14356., 2014.
[25] X. Zhao, Z. Zebao, F. Shuai, S. Zhiqiang et C. Dezhan, «A TD-DFT Study on the Photo-Physicochemical Properties of Chrysophanol from Rheum» Int. J. Mol. Sci., n° %110, pp. 3186-3193, 2009.
[26] A. Hlel, A. Mabrouk, M. Chemek, I. Ben Khalifa et K. Alimi, Computational Condensed Matter, vol. 3, pp. 30-40, 2015.
[27] V. Luk€es, A. Aquino et H. Lischka, J. Phys. Chem. A, vol. 109, pp. 10232-10238., 2005.
[28] M. L. L. Kouakou, L. Diao, Q. Zhang, Z. Li, Q. Wu, W. Lu, D. Pan et Z. Wei, «Theoretical study of WS-9-Based organic sensitizers for unusual vis/NIR absorption and highly efficient dye-sensitized solar cells,» J. Phys. Chem., vol. 119, p. 9782–9790, 2015.
[29] Françoise Provencher, PhD, memory of University of Montreal, p. 28, (2013).
[30] C. Qin et A. E. Clark, «DFT characterization of the optical and redox properties of natural pigments relevant to dye-sensitized solar cells,» Chem. Phys. Lett. vol. 26, p. 438, 2007.
[31] K. Bamba, W. P. Ouattara, K. N. N‟guessan et N. Ziao, «SARs investigation of α-, β-, δ-, γ-, ε-RuCl2(Azpy)2 complexes as Antitumor Drugs.,» Computational Chemistry, vol. 4, pp. 1-10, 2016.
[32] N. Kurita et K. Kobayashi, «Density Functional MO Calculation for Stacked DNA Base-Pairs with Backbones.,» Computers & Chemistry, vol. 24, pp. 351-357., 2000.
[33] J. Chen, J. Li, L. Qian et K. Zheng, Structure, Journal of Molecular; THEOCHEM, vol. 728, p. 93–101., 2005.
[34] R. Zhao, N. Al-Said, D. Sternbach et J. William Lown, «Camptothecin and Minor-Groove Binder Hybrid Molecules: Synthesis, Inhibition of Topoisomerase I, and Anticancer Cytotoxicity in Vitro.,» Journal of Medicinal Chemistry, vol. 40, pp. 216-225, 1997.
[35] A. Velders, H. Kooijman, A. Spek, J. Haasnoot, D. De Vos et J. Reedijk, «Strong Differences in the in Vitro Cytotoxicity of Three Isomeric Dichlorobis (2-Phenylazopyridine) Ruthenium(II) Complexes.,» Inorganic Chemistry, vol. 39, pp. 2966- 2967, 2000.
[36] S. Jain, C. Tsai et H. Sobell, «Visualization of Drug-Nucleic Acid Interactions at Atomic Resolution. II. Structure of an Ethidium/Dinucleoside Monophosphate Crystalline Complex, Ethidium: 5-Iodocytidylyl (3’-5’) Guanosine.,» Journal of Molecular Biology, vol. 114, pp. 317-331., 1977.
[37] K. Zheng, H. Deng, X. Liu, H. Li, H. Chao et L. Ji, «Electronic Structures, DNA-Binding and Related Properties of Complexes [Ru(bpy)2L]2+ (L = ip, pip, hpip).,» Journal of Molecular Structure THEOCHEM, vol. 682, pp. 225-233, 2004.
[38] A. H. Velders, v. d. S. Karlijn, C. G. H. Anna, R. Jan, K. Huub, A. L. et Spek, «Dichlorobis(2-phenylazopyridine)ruthenium(II) complexes: characterisation, spectroscopic and structural properties of four isomers,» Dalton trans, pp. 448-455, 2004.
[39] M. ANGOTTI, "Study by mass spectrometry of laser photoreactions of colored sensitizers used in photodynamic therapy (PDT)," University of Metz, 2001.
[40] B. Spencer and P. Christel, "Better understanding fluorochromes for microscopy;" the confocal microscopy, permanent Formation, CNRS, Gif-sur-Yvette, p. 20, 2013.
[41] Z. Xingjun, S. Qianqian, F. Wei et L. Fuyou, «Anti-Stokes shift luminescent materials for bio-applications» Chem. Soc. Rev, p. 1, 2016.
[42] M. Hachi, S. El Khattabi, A. Fitri, A. Benjelloun, M. Benzakour, M. Mcharfi, M. Hamidi et M. Bouachrine, J. Mater. Environ. Sci., vol. 9, n° %14, pp. 1200-121, 2018.
[43] G. Virginie, N. Jean-Claude and S. Charles, "The green fluorescent protein: application to intracellular steroid receptor dynamics"; medicine/science, vol. 15, pp. 45-55, 1999.
[44] D. Pierre-Emmanuel, "BODIPY - phosphine - gold complexes: Application to the design of optical theranostics" University of Bourgogne, NNT: 2015DIJOS036, tel-01628179, p. 105, 2015.
Cite This Article
  • APA Style

    Wawohinlin Patrice Ouattara, Kafoumba Bamba, Kouakou Nobel Nguessan, Tuo Nanou Tieba, Konate Bibata, et al. (2022). Theranostic Agent Study for Cancer Treatment by the TDDFT Method: Case of Some Ruthenium Azopyridine Complexes. Modern Chemistry, 10(3), 74-85. https://doi.org/10.11648/j.mc.20221003.12

    Copy | Download

    ACS Style

    Wawohinlin Patrice Ouattara; Kafoumba Bamba; Kouakou Nobel Nguessan; Tuo Nanou Tieba; Konate Bibata, et al. Theranostic Agent Study for Cancer Treatment by the TDDFT Method: Case of Some Ruthenium Azopyridine Complexes. Mod. Chem. 2022, 10(3), 74-85. doi: 10.11648/j.mc.20221003.12

    Copy | Download

    AMA Style

    Wawohinlin Patrice Ouattara, Kafoumba Bamba, Kouakou Nobel Nguessan, Tuo Nanou Tieba, Konate Bibata, et al. Theranostic Agent Study for Cancer Treatment by the TDDFT Method: Case of Some Ruthenium Azopyridine Complexes. Mod Chem. 2022;10(3):74-85. doi: 10.11648/j.mc.20221003.12

    Copy | Download

  • @article{10.11648/j.mc.20221003.12,
      author = {Wawohinlin Patrice Ouattara and Kafoumba Bamba and Kouakou Nobel Nguessan and Tuo Nanou Tieba and Konate Bibata and Ouattara Lamoussa and Affi Sopi Thomas and Charles Guillaume Kodjo and Nahosse Ziao},
      title = {Theranostic Agent Study for Cancer Treatment by the TDDFT Method: Case of Some Ruthenium Azopyridine Complexes},
      journal = {Modern Chemistry},
      volume = {10},
      number = {3},
      pages = {74-85},
      doi = {10.11648/j.mc.20221003.12},
      url = {https://doi.org/10.11648/j.mc.20221003.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.mc.20221003.12},
      abstract = {The interest of ruthenium azopyridine complexes lies in the diversity of their properties. The use of these complexes in this work is part of the dynamics to fight against cancer. The main objective is to show by Density Functional Theory (DFT) method the possibility of using these complexes in the diagnosis and treatment of cancers. Optimization, frequency calculation and properties of the β and d isomers of these azopyridine complexes were determined using DFT and TDDFT methods at the B3LYP/Lanl2DZ level. The results of this analysis show on the one hand that the most cytotoxic isomers by mode of intercalation between DNA base pairs are the δ-RuCl2 (Azpy)2 and δ-RuCl2 (Nazpy)2. The free enthalpy of reaction values indicate that the substitution of the phenyl group by the naphthol group changes the stability of these azopyridine complexes. In terms of reactivity, it can be said that the substitution decreases the nucleophilicity and increases the electrophilicity of these ruthenium azopyridine complexes. The Nazpy isomers are the most soluble in organic solvents. On the other hand, Nazpy isomers were discovered the best complexes suitable for diagnostic and deep penetration treatments. Furthermore, the substitution of the phenyl group by the naphthol group improves the cytotoxicity and fluorescence properties of these complexes. Therefore, for the subsequent work, we would like to extend this study to the elucidation of the mechanism of photodynamic therapy regarding these Nazpy ruthenium complexes.},
     year = {2022}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Theranostic Agent Study for Cancer Treatment by the TDDFT Method: Case of Some Ruthenium Azopyridine Complexes
    AU  - Wawohinlin Patrice Ouattara
    AU  - Kafoumba Bamba
    AU  - Kouakou Nobel Nguessan
    AU  - Tuo Nanou Tieba
    AU  - Konate Bibata
    AU  - Ouattara Lamoussa
    AU  - Affi Sopi Thomas
    AU  - Charles Guillaume Kodjo
    AU  - Nahosse Ziao
    Y1  - 2022/09/19
    PY  - 2022
    N1  - https://doi.org/10.11648/j.mc.20221003.12
    DO  - 10.11648/j.mc.20221003.12
    T2  - Modern Chemistry
    JF  - Modern Chemistry
    JO  - Modern Chemistry
    SP  - 74
    EP  - 85
    PB  - Science Publishing Group
    SN  - 2329-180X
    UR  - https://doi.org/10.11648/j.mc.20221003.12
    AB  - The interest of ruthenium azopyridine complexes lies in the diversity of their properties. The use of these complexes in this work is part of the dynamics to fight against cancer. The main objective is to show by Density Functional Theory (DFT) method the possibility of using these complexes in the diagnosis and treatment of cancers. Optimization, frequency calculation and properties of the β and d isomers of these azopyridine complexes were determined using DFT and TDDFT methods at the B3LYP/Lanl2DZ level. The results of this analysis show on the one hand that the most cytotoxic isomers by mode of intercalation between DNA base pairs are the δ-RuCl2 (Azpy)2 and δ-RuCl2 (Nazpy)2. The free enthalpy of reaction values indicate that the substitution of the phenyl group by the naphthol group changes the stability of these azopyridine complexes. In terms of reactivity, it can be said that the substitution decreases the nucleophilicity and increases the electrophilicity of these ruthenium azopyridine complexes. The Nazpy isomers are the most soluble in organic solvents. On the other hand, Nazpy isomers were discovered the best complexes suitable for diagnostic and deep penetration treatments. Furthermore, the substitution of the phenyl group by the naphthol group improves the cytotoxicity and fluorescence properties of these complexes. Therefore, for the subsequent work, we would like to extend this study to the elucidation of the mechanism of photodynamic therapy regarding these Nazpy ruthenium complexes.
    VL  - 10
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Laboratory of Thermodynamics and Physical Chemistry of the Middle (LTPCM), Unity of Formation and Research-Science Fundamental and Application (UFR-SFA), University of Nangui Abrogoua, Abidjan, Ivory Coast

  • Laboratory of Thermodynamics and Physical Chemistry of the Middle (LTPCM), Unity of Formation and Research-Science Fundamental and Application (UFR-SFA), University of Nangui Abrogoua, Abidjan, Ivory Coast

  • Laboratory of Thermodynamics and Physical Chemistry of the Middle (LTPCM), Unity of Formation and Research-Science Fundamental and Application (UFR-SFA), University of Nangui Abrogoua, Abidjan, Ivory Coast

  • Laboratory of Thermodynamics and Physical Chemistry of the Middle (LTPCM), Unity of Formation and Research-Science Fundamental and Application (UFR-SFA), University of Nangui Abrogoua, Abidjan, Ivory Coast

  • Laboratory of Thermodynamics and Physical Chemistry of the Middle (LTPCM), Unity of Formation and Research-Science Fundamental and Application (UFR-SFA), University of Nangui Abrogoua, Abidjan, Ivory Coast

  • Laboratory of Thermodynamics and Physical Chemistry of the Middle (LTPCM), Unity of Formation and Research-Science Fundamental and Application (UFR-SFA), University of Nangui Abrogoua, Abidjan, Ivory Coast

  • Laboratory of Thermodynamics and Physical Chemistry of the Middle (LTPCM), Unity of Formation and Research-Science Fundamental and Application (UFR-SFA), University of Nangui Abrogoua, Abidjan, Ivory Coast

  • Laboratory of Thermodynamics and Physical Chemistry of the Middle (LTPCM), Unity of Formation and Research-Science Fundamental and Application (UFR-SFA), University of Nangui Abrogoua, Abidjan, Ivory Coast

  • Laboratory of Thermodynamics and Physical Chemistry of the Middle (LTPCM), Unity of Formation and Research-Science Fundamental and Application (UFR-SFA), University of Nangui Abrogoua, Abidjan, Ivory Coast

  • Sections