Modern Chemistry

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

Synthesis of N'-(2,3-dihydroxybenzylidene)-4-methylbenzohydrazide: Spectroscopic Characterization and X-ray Structure Determination

p-Toluic hydrazide was used for synthetizing a new Schiff base N'-(2,3-dihydroxybenzylidene)-4-methylbenzohydrazide (I). The prepared compound was characterized by elemental analysis, infrared and 1H and 13C NMR spectroscopy techniques, and the structure of compound (I) was determined by single-crystal X-ray diffraction study. The compound (C15H14N2O3) crystallises in the monoclinic space group P21/n with the following unit cell parameters: a = 11.7820 (6) Å, b = 8.5278 (4) Å, c = 13.6054 (7) Å, β = 109.346 (5)°, V = 1289.81 (12) Å3, Z = 4, R1 = 0.071 and wR2 = 0.197. The X-ray structure shows that the compound (I) adopts an E configuration with respect to the double bond C7=N1. The carbonyl oxygen atom O3 and the nitrogen atom N1 of the hydrazide moiety are in a syn conformation with respect to C8—N2 bond. The crystal packing of compound (I) is stabilized by intramolecular O(phenol)–H•••N(carbohydrazide) which results in an S(6) ring motif and intermolecular O(phenol)–H•••O(carbohydrazide) hydrogen bonds which form chains. The carbonohydrazide moiety C=N–N–C(O)–N–N=C fragment is almost coplanar with the two benzene rings with dihedral angles of their mean planes of 10.35° [C1—C6] and 7.99° [C9—C14], respectively. The dihedral angle between the mean planes of the phenyl rings is 2.46°.

Schiff Base, 2,3-dihroxybenzaldehyde, p-toluic Hydrazide, Single Crystal Structure

APA Style

Alioune Fall, Mohamedou El Boukhary, Thierno Mousa Seck, Farba Bouyagui Tamboura, Ibrahima Elhadj Thiam, et al. (2023). Synthesis of N'-(2,3-dihydroxybenzylidene)-4-methylbenzohydrazide: Spectroscopic Characterization and X-ray Structure Determination. Modern Chemistry, 11(2), 43-48. https://doi.org/10.11648/j.mc.20231102.11

ACS Style

Alioune Fall; Mohamedou El Boukhary; Thierno Mousa Seck; Farba Bouyagui Tamboura; Ibrahima Elhadj Thiam, et al. Synthesis of N'-(2,3-dihydroxybenzylidene)-4-methylbenzohydrazide: Spectroscopic Characterization and X-ray Structure Determination. Mod. Chem. 2023, 11(2), 43-48. doi: 10.11648/j.mc.20231102.11

AMA Style

Alioune Fall, Mohamedou El Boukhary, Thierno Mousa Seck, Farba Bouyagui Tamboura, Ibrahima Elhadj Thiam, et al. Synthesis of N'-(2,3-dihydroxybenzylidene)-4-methylbenzohydrazide: Spectroscopic Characterization and X-ray Structure Determination. Mod Chem. 2023;11(2):43-48. doi: 10.11648/j.mc.20231102.11

Copyright © 2023 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Rollas, S. & Küçükgüzel, S. G. (2007). Biological Activities of Hydrazone Derivatives. Molecules, 12 (8), 1910–1939. https://doi.org/10.3390/12081910
2. Narang, R., Narasimhan, B. & Sharma, S. A Review on Biological Activities and Chemical Synthesis of Hydrazide Derivatives. Current Medicinal Chemistry, 19 (4), 569–612. https://doi.org/10.2174/092986712798918789
3. Mohareb, R. M., Fleita, D. H. & Sakka, O. K. (2011). Novel Synthesis of Hydrazide-Hydrazone Derivatives and Their Utilization in the Synthesis of Coumarin, Pyridine, Thiazole and Thiophene Derivatives with Antitumor Activity. Molecules, 16 (1), 16–27. https://doi.org/10.3390/molecules16010016
4. Popiołek, Ł. & Biernasiuk, A. (2016). Design, synthesis, and in vitro antimicrobial activity of hydrazide–hydrazones of 2-substituted acetic acid. Chemical Biology & Drug Design, 88 (6), 873–883. https://doi.org/10.1111/cbdd.12820
5. Zala, M., Vora, J. J. & Patel, H. B. (2020). Synthesis, Characterization, and Comparative Study of Some Heterocyclic Compounds Containing Isoniazid and Nicotinic Acid Hydrazide Moieties. Russian Journal of Organic Chemistry, 56 (10), 1795–1800. https://doi.org/10.1134/S1070428020100218
6. Saleh, A. & Saleh, M. Y. (2022). Synthesis of heterocyclic compounds by cyclization of Schiff bases prepared from capric acid hydrazide and study of biological activity. Egyptian Journal of Chemistry, 65 (12), 783–792. https://doi.org/10.21608/EJCHEM.2022.133946.5904
7. Sharma, B., Chowdhary, S., Legac, J., Rosenthal, P. J. & Kumar, V. (2023). Quinoline-based heterocyclic hydrazones: Design, synthesis, anti-plasmodial assessment, and mechanistic insights. Chemical Biology & Drug Design, 101 (4), 829–836. https://doi.org/10.1111/cbdd.14185
8. Popiołek, Ł. (2017). Hydrazide–hydrazones as potential antimicrobial agents: overview of the literature since 2010. Medicinal Chemistry Research, 26 (2), 287–301. https://doi.org/10.1007/s00044-016-1756-y
9. Popiołek, Ł. (2021). Updated Information on Antimicrobial Activity of Hydrazide–Hydrazones. International Journal of Molecular Sciences, 22 (17). https://doi.org/10.3390/ijms22179389
10. Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Synthesis and characterization of novel hydrazide–hydrazones and the study of their structure–antituberculosis activity. European Journal of Medicinal Chemistry, 41 (11), 1253–1261. https://doi.org/10.1016/j.ejmech.2006.06.009
11. Turan-Zitouni, G., Altıntop, M. D., Özdemir, A., Demirci, F., Mohsen, U. A. & Kaplancıklı, Z. A. (2013). Synthesis and antifungal activity of new hydrazide derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 28 (6), 1211–1216. https://doi.org/10.3109/14756366.2012.723208
12. Aslanhan, Ö., Kalay, E., Tokalı, F. S., Can, Z. & Şahin, E. (2023). Design, synthesis, antioxidant, and anticholinesterase activities of novel isonicotinic hydrazide-hydrazone derivatives. Journal of Molecular Structure, 1279, 135037. https://doi.org/10.1016/j.molstruc.2023.135037
13. Nocheva, H., Vladimirova, S., Tzankova, D., Peikova, L. & Georgieva, M. (2023). Analgesic properties of newly synthesized N pyrrolyl hydrazide hydrazones. Tropical Journal of Pharmaceutical Research, 22 (1), 121–127. https://doi.org/10.4314/tjpr.v22i1.17
14. Mallikarjuna, B. P., Sastry, B. S., Kumar, G. V. S., Rajendraprasad, Y., Chandrashekar, S. M. & Sathisha, K. (2009). Synthesis of new 4-isopropylthiazole hydrazide analogs and some derived clubbed triazole, oxadiazole ring systems – A novel class of potential antibacterial, antifungal and antitubercular agents. European Journal of Medicinal Chemistry, 44 (11), 4739–4746. https://doi.org/10.1016/j.ejmech.2009.06.008
15. Sethiya, A., Joshi, D., Manhas, A., Sahiba, N., Agarwal, D. K., Jha, P. C. & Agarwal, S. (2023). Glycerol based carbon sulfonic acid catalyzed synthesis, in silico studies and in vitro biological evaluation of isonicotinohydrazide derivatives as potent antimicrobial and anti-tubercular agents. Heliyon, 9 (2), e13226. https://doi.org/10.1016/j.heliyon.2023.e13226
16. Berillo, D. A. & Dyusebaeva, M. A. (2022). Synthesis of hydrazides of heterocyclic amines and their antimicrobial and spasmolytic activity. Saudi Pharmaceutical Journal, 30 (7), 1036–1043. https://doi.org/10.1016/j.jsps.2022.04.009
17. Verma, S., Lal, S., Narang, R. & Sudhakar, K. (2023). Quinoline Hydrazide/Hydrazone Derivatives: Recent Insights on Antibacterial Activity and Mechanism of Action. ChemMedChem, 18 (5), e202200571. https://doi.org/10.1002/cmdc.202200571
18. Kumar, B. V. S., Khetmalis, Y. M., Nandikolla, A., Kumar, B. K., Van Calster, K., Murugesan, S., Cappoen, D., Sekhar, K. V. G. C & Sekhar, K. V. G. C. (2023). Design, Synthesis, and Antimycobacterial Evaluation of Novel Tetrahydroisoquinoline Hydrazide Analogs. Chemistry & Biodiversity, 20 (2), e202200939. https://doi.org/10.1002/cbdv.202200939
19. Alam, M. S. & Lee, D.-U. Hydrazide-hydrazones as Small Molecule Tropomyosin Receptor Kina se A (TRKA) Inhibitors: Synthesis, Anticancer Activities, In silico ADME and Molecular Docking Studies. Medicinal Chemistry, 19 (1), 47–63. https://doi.org/10.2174/1573406418666220427105041
20. Bora, D., Sharma, A., John, S. E. & Shankaraiah, N. (2023). Development of hydrazide hydrazone-tethered combretastatin-oxindole derivatives as antimitotic agents. Journal of Molecular Structure, 1275, 134675. https://doi.org/10.1016/j.molstruc.2022.134675
21. He, G., Hua, X., Yang, N., Li, L., Xu, J., Yang, L., Wang, Q. & Ji, L. (2019). Synthesis and application of a “turn on” fluorescent probe for glutathione based on a copper complex of coumarin hydrazide Schiff base derivative. Bioorganic Chemistry, 91, 103176. https://doi.org/10.1016/j.bioorg.2019.103176
22. Yang, G., Li, P., Han, Y., Tang, L., Liu, Y., Xin, H., Wang, K.-N., Zhao, S., Liu, Z. & Cao, D. (2023). A coumarin hydrazide Schiff base fluorescent probe for sensitively sensing Al3+ in living cells. Materials Chemistry and Physics, 295, 127145. https://doi.org/10.1016/j.matchemphys.2022.127145
23. Shankar, M., Raj, A. D., Purusothaman, R., Vimalan, M., Athimoolam, S. & Potheher, I. V. (2019). Studies on optical, electrical, mechanical, and theoretical investigation of 4-nitro-benzoic acid (3-ethoxy-2-hydroxy-benzylidene)-hydrazide: A novel Schiff base organic NLO material. Journal of Molecular Structure, 1181, 348–359. https://doi.org/10.1016/j.molstruc.2018.12.082
24. Gupta, S. R., Mourya, P., Singh, M. M. & Singh, V. P. (2014). Synthesis, structural, electrochemical and corrosion inhibition properties of two new ferrocene Schiff bases derived from hydrazides. Journal of Organometallic Chemistry, 767, 136–143. https://doi.org/10.1016/j.jorganchem.2014.05.038
25. Lu, Y., Huang, Z.-M., Zou, H.-H. & Liang, F.-P. (2023). Structures and magnetic properties of two series of Schiff base binuclear lanthanide complexes. Applied Organometallic Chemistry, 37 (1), e6934. https://doi.org/10.1002/aoc.6934
26. Dongare, G. & Aswar, A. (2023). Synthesis of new heterocyclic N’-(2-hydroxy-3-methoxybenzylidene)-4-oxopiperidine-1-carbohydrazide and its mononuclear metal (II) complexes: Spectroscopic characterization, fluorescence, DFT, thermo-kinetic, and antimicrobial studies. Journal of Molecular Structure, 1281, 135107. https://doi.org/10.1016/j.molstruc.2023.135107
27. Seck, T. M., Gaye, P. A., Ndoye, C., Thiam, I. E., Diouf, O., Retailleau, P. & Gaye, M. (2020). Diaqua-bis-μ-1,5-bis[(pyridin-2-yl)methylidene]carbonohydrazide(1–)di-μ-chlorido-tetrachloridotetrazinc(II). Acta Crystallographica Section E, 76 (8), 1349–1352. https://doi.org/10.1107/S2056989020009834
28. Sheldrick, G. M. (2015). SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica Section A, 71 (1), 3–8. https://doi.org/10.1107/S2053273314026370
29. Sheldrick, G. M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica Section C, 71 (1), 3–8. https://doi.org/10.1107/S2053229614024218
30. Farrugia, L. J. (2012). WinGX and ORTEP for Windows: an update. Journal of Applied Crystallography, 45 (4), 849–854. https://doi.org/10.1107/S0021889812029111
31. Gaye, M., Tamboura, F. B. & Sall, A. S. (2003). Spectroscopic studies of some lanthanide(III) nitrate complexes synthesized from a new ligand 2,6-bis-(salicylaldehyde hydrazone)-4-chlorophenol. Bulletin of the Chemical Society of Ethiopia, 17 (1). https://doi.org/10.4314/bcse.v17i1.61726
32. Tamboura, F. B., Diouf, O., Barry, A. H., Gaye, M. & Sall, A. S. (2012). Dinuclear lanthanide(III) complexes with large-bite Schiff bases derived from 2,6-diformyl-4-chlorophenol and hydrazides: Synthesis, structural characterization, and spectroscopic studies. Polyhedron, 43 (1), 97–103. https://doi.org/10.1016/j.poly.2012.06.025
33. Qiao, Y., Ju, X., Gao, Z. & Kong, L. (2010). 1-(1-Phenylethylidene)carbonohydrazide. Acta Crystallographica Section E, 66 (10), o2691. https://doi.org/10.1107/S1600536810038353