Volume 5, Issue 2, April 2017, Page: 19-28
Study of the Energy of Consciousness Healing Treatment on Physical, Structural, Thermal, and Behavioral Properties of Zinc Chloride
Mahendra Kumar Trivedi, Trivedi Global, Inc., Nevada, USA
Alice Branton, Trivedi Global, Inc., Nevada, USA
Dahryn Trivedi, Trivedi Global, Inc., Nevada, USA
Gopal Nayak, Trivedi Global, Inc., Nevada, USA
Alan Joseph Balmer, Trivedi Global, Inc., Nevada, USA
Dimitrius Anagnos, Trivedi Global, Inc., Nevada, USA
Janice Patricia Kinney, Trivedi Global, Inc., Nevada, USA
Joni Marie Holling, Trivedi Global, Inc., Nevada, USA
Joy Angevin Balmer, Trivedi Global, Inc., Nevada, USA
Lauree Ann Duprey-Reed, Trivedi Global, Inc., Nevada, USA
Vaibhav Rajan Parulkar, Trivedi Global, Inc., Nevada, USA
Parthasarathi Panda, Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, India
Kalyan Kumar Sethi, Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, India
Snehasis Jana, Trivedi Science Research Laboratory Pvt. Ltd., Bhopal, India
Received: Feb. 24, 2017;       Accepted: Mar. 9, 2017;       Published: Apr. 1, 2017
DOI: 10.11648/j.mc.20170502.11      View  2090      Downloads  59
Abstract
Zinc chloride is an important pharmaceutical/nutraceutical mineral for the prevention and treatment of several diseases. The objective of the current study was to investigate the impact of The Trivedi Effect®-Energy of Consciousness Healing Treatment (Biofield Energy Treatment) on physical, structural, thermal, and behavioral properties of zinc chloride using PXRD, PSD, FT-IR, UV-vis, and DSC analysis. Zinc chloride was divided into two parts – one part was control, while another part was treated with The Trivedi Effect® remotely by seven renowned Biofield Energy Healers and defined as The Trivedi Effect® treated sample. A significant alteration of the crystallite size and relative intensities of the PXRD peaks were observed in The Trivedi Effect® treated sample with respect to the control sample. A sharp peak at 2θ equal to 51.45°, which was observed in the control sample was disappeared in the treated sample. The average crystallite size of the treated sample was decreased by 2.13% compared with the control sample. The size of the particles at d10, d50, and d90 was decreased by 3.36%, 7.97%, and 11.51%, respectively in the treated sample compared with the control sample. The surface area of the treated sample was significantly increased by 5.69% compared with the control sample. The FT-IR spectroscopic analysis revealed that Zn-Cl stretching in the control was 646 cm-1, whereas it was significantly shifted downward to 505 cm-1 in the treated sample. The UV-vis analysis exhibited that wavelength of the maximum absorbance (λmax) of both the control and treated samples was at 196.4 nm. The DSC analysis exhibited that the melting and decomposition temperature were increased by 0.93% and 0.56%, respectively in the treated zinc chloride compared to the control sample. The enthalpy of fusion of the treated sample (338.27 J/g) was increased significantly by 33.84% compared with the control sample (252.75 J/g). The enthalpy of decomposition of the treated sample was increased by 3.78% compared with the control sample. The current study anticipated that The Trivedi Effect®-Energy of Consciousness Healing Treatment might lead to produce a new polymorphic form of zinc chloride, which would be more soluble, bioavailable, and thermally stable compared with the untreated compound. The treated sample could be more stable during manufacturing, delivery or storage conditions than the untreated sample. Hence, the treated zinc chloride would be very useful to design better nutraceutical/pharmaceutical formulations that might offer better therapeutic response against inflammatory diseases, immunological disorders, aging, stress, cancer, etc.
Keywords
Biofield Energy Healing Treatment, Consciousness Energy Healing Treatment, Biofield Energy Healers, The Trivedi Effect®, Zinc Chloride, PXRD, Particle Size, DSC
To cite this article
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Alan Joseph Balmer, Dimitrius Anagnos, Janice Patricia Kinney, Joni Marie Holling, Joy Angevin Balmer, Lauree Ann Duprey-Reed, Vaibhav Rajan Parulkar, Parthasarathi Panda, Kalyan Kumar Sethi, Snehasis Jana, Study of the Energy of Consciousness Healing Treatment on Physical, Structural, Thermal, and Behavioral Properties of Zinc Chloride, Modern Chemistry. Vol. 5, No. 2, 2017, pp. 19-28. doi: 10.11648/j.mc.20170502.11
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Ronconi L, Sadler PJ. (2008) Applications of heteronuclear NMR spectroscopy in biological and medicinal inorganic chemistry. Coordn Chem Rev 252: 2239-2277.
[2]
Berg JM, Shi Y. (1996) The galvanization of biology: A. growing appreciation for the roles of zinc. Science 271: 1081-1085.
[3]
Higdon JV, Ho E. (2005) In: M. Gielen, E. R. T. Tiekink (Eds.), Metallotherapeutic drugs and metal-based diagnostic agents: The use of metals in medicine, Wiley-VCH, Weinheim, p. 237.
[4]
Brewer GJ. (2001) Zinc acetate for the treatment of Wilson's disease. Expert Opin Pharmacother 2: 1473-1477.
[5]
Prasad AS. (1979) Clinical, biochemical, and pharmacological role of zinc. Ann Rev Pharmacol Toxicol 19: 393-426.
[6]
Supuran CT. (2008) Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators. Nat Rev Drug Dis 7: 168-181.
[7]
Elmes ME. (1975) Letter: Zinc in human medicine. Lancet 2: 549.
[8]
Mazumder PM, Pattnayak S, Parvani H, Sasmal D, Rathinavelusamy P. (2012) Evaluation of immunomodulatory activity of Glycyrhiza glabra L. roots in combination with zing. Asian Pac J Trop Biomed 2: S15-S20.
[9]
Brynestad J, Yakel HL. (1978) Preparation and structure of anhydrous zinc chloride. Inorg Chem 17: 1376-1377.
[10]
Kasture AV, Wadodkar SG. (2008) A. text book of pharmaceutical chemistry-1, Nirali Prakashan, 25th Ed., Pune, India.
[11]
Mahadik KR, Kuchekar BS. (2008) Concise inorganic pharmaceutical chemistry, Nirali Prakashan, 25th Ed., Pune, India.
[12]
McDaniel S, Goldman GD. (2002) Consequences of using escharotic agents as primary treatment for nonmelanoma skin cancer. Arch Dermatol 138: 1593-1596.
[13]
Hu J, Yang Z, Wang J, Yu J, Guo J, Liu S, Qian C, Song L, Wu Y, Cheng J. (2016) Zinc chloride transiently maintains mouse embryonic stem cell pluripotency by activating Stat3 signaling. PLoS One 11: e0148994.
[14]
Fukuyama Y, Kawarai S, Tezuka T, Kawabata A, Maruo T. (2016) The palliative efficacy of modified Mohs paste for controlling canine and feline malignant skin wounds. Vet Q. 1: 1-7.
[15]
Yakimovskii AF, Kryzhanovskaya SY. (2015) Zinc chloride and zinc acetate injected into the neostriatum produce opposite effect on locomotor behavior of rats. Bull Exp Biol Med 160: 281-282.
[16]
Stenger VJ. (1999) Bioenergetic fields. Sci Rev Alternative Med 3: 16-21.
[17]
Rogers, M. (1989) "Nursing: A. Science of Unitary Human Beings." In J. P. Riehl-Sisca (ed.) Conceptual Models for Nursing Practice. 3rd Edn. Norwark: Appleton & Lange.
[18]
Rosa L, Rosa E, Sarner L, Barrett S. (1998) A. close look at therapeutic touch. Journal of the American Medical Association 279: 1005-1010.
[19]
Warber SL, Cornelio D, Straughn, J, Kile G. (2004) Biofield energy healing from the inside. J. Altern Complement Med 10: 1107-1113.
[20]
Koithan M. (2009) Introducing complementary and alternative therapies. J. Nurse Pract 5: 18-20.
[21]
Trivedi MK, Patil S, Shettigar H, Mondal SC, Jana S. (2015) The potential impact of biofield treatment on human brain tumor cells: A. time-lapse video microscopy. J Integr Oncol 4: 141.
[22]
Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S. (2015) An evaluation of biofield treatment on susceptibility pattern of multidrug resistant Stenotrophomonas maltophilia: An emerging global opportunistic pathogen. Clin Microbiol 4: 211.
[23]
Trivedi MK, Patil S, Shettigar H, Gangwar M, Jana S. (2015) An effect of biofield treatment on multidrug-resistant Burkholderia cepacia: A. multihost pathogen. J. Trop Dis 3: 167.
[24]
Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S. (2015) Phenotypic and biotypic characterization of Klebsiella oxytoca: An impact of biofield treatment. J. Microb Biochem Technol 7: 203-206.
[25]
Trivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, Jana S. (2015) Antibiogram, biochemical reactions and genotyping characterization of biofield treated Staphylococcus aureus. American Journal of BioScience 3: 212-220.
[26]
Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, Jana S. (2015) Physical, thermal, and spectroscopic characterization of biofield energy treated potato micropropagation medium. American Journal of Bioscience and Bioengineering 3: 106-113.
[27]
Trivedi MK, Branton A, Trivedi D, Nayak G, Mondal SC, Jana S. (2015) Biochemical differentiation and molecular characterization of biofield treated Vibrio parahaemolyticus. American Journal of Clinical and Experimental Medicine 3: 260-267.
[28]
Trivedi MK, Branton A, Trivedi D, Gangwar M, Jana S. (2015) Antimicrobial susceptibility, biochemical characterization and molecular typing of biofield treated Klebsiella pneumoniae. J Health Med Inform 6: 206.
[29]
Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Latiyal O, Jana S (2015) Analysis of physical, thermal, and structural properties of biofield energy treated molybdenum dioxide. International Journal of Materials Science and Applications 4: 354-359.
[30]
Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Latiyal O, Jana S. (2015) Characterization of atomic and physical properties of biofield energy treated manganese sulfide powder. American Journal of Physics and Applications 3: 215-220.
[31]
Trivedi MK, Branton A, Trivedi D, Nayak G, Saikia G, Jana S. (2015) Physical and structural characterization of biofield treated imidazole derivatives. Nat Prod Chem Res 3: 187.
[32]
Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Mishra RK, Jana S. (2015) Characterization of physical, spectral and thermal properties of biofield treated 1,2,4-Triazole. J. Mol Pharm Org Process Res 3: 128.
[33]
Trivedi MK, Tallapragada RM, Branton A, Trivedi D, Nayak G, Mishra RK, Jana S. (2015) Biofield treatment: A. potential strategy for modification of physical and thermal properties of gluten hydrolysate and ipomoea macroelements. J. Nutr Food Sci 5: 414.
[34]
Trivedi MK, Nayak G, Patil S, Tallapragada RM, Jana S, Mishra RK. (2015) Bio-field Treatment: An effective strategy to improve the quality of beef extract and meat infusion powder. J. Nutr Food Sci 5: 389.
[35]
Trivedi MK, Branton A, Trivedi D, Nayak G, Latiyal O, Jana S. (2015) Evaluation of biofield treatment on atomic and thermal properties of ethanol. Organic Chem Curr Res 4: 145.
[36]
Trivedi MK, Branton A, Trivedi D, Nayak G, Singh R, Jana S. (2015) Physical, thermal and spectroscopic studies on biofield treated p-dichlorobenzene. Biochem Anal Biochem 4: 204.
[37]
Trivedi MK, Branton A, Trivedi D, Nayak G, Bairwa K, Jana S. (2015) Physicochemical and spectroscopic characterization of biofield energy treated p-anisidine. Pharm Anal Chem Open Access 6: 102.
[38]
Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S. (2015) Agronomic characteristics, growth analysis, and yield response of biofield treated mustard, cowpea, horse gram, and groundnuts. International Journal of Genetics and Genomics 3: 74-80.
[39]
Trivedi MK, Branton A, Trivedi D, Nayak G, Gangwar M, Jana S. (2015) Analysis of genetic diversity using simple sequence repeat (SSR) markers and growth regulator response in biofield treated cotton (Gossypium hirsutum L.). American Journal of Agriculture and Forestry 3: 216-221.
[40]
Chereson R. (2009) Bioavailability, bioequivalence, and drug selection. In: Makoid CM, Vuchetich PJ, Banakar UV (Eds) Basic pharmacokinetics (1st Edn) Pharmaceutical Press, London.
[41]
Blagden N, de Matas M, Gavan PT, York P. (2007) Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev 59: 617-630.
[42]
Trivedi MK, Mohan TRR (2016) Biofield energy signals, energy transmission and neutrinos. American Journal of Modern Physics 5: 172-176.
[43]
Alexander L, Klug HP. (1950) Determination of crystallite size with the X-Ray Spectrometer. J. App Phys 21: 137.
[44]
Langford JI, Wilson AJC. (1978) Scherrer after sixty years: A. survey and some new results in the determination of crystallite size. J. Appl Cryst 11: 102-113.
[45]
Inoue M, Hirasawa I. (2013) The relationship between crystal morphology and XRD peak intensity on CaSO4.2H2O. J. Crystal Growth 380: 169-175.
[46]
Raza K, Kumar P, Ratan S, Malik R, Arora S. (2014) Polymorphism: The phenomenon affecting the performance of drugs. SOJ Pharm Pharm Sci 1: 10.
[47]
Thiruvengadam E, Vellaisamy G. (2014) Polymorphism in pharmaceutical ingredients a review. World Journal of Pharmacy and Pharmaceutical Sciences 3: 621-633.
[48]
http://www.dissolution.com/ddg/showthread.php?2366-Surface-Area-vs-Particle-Size.
[49]
Mosharrof M, Nystrӧm C. (1995) The effect of particle size and shape on the surface specific dissolution rate of microsized practically insoluble drugs. Int J Pharm 122: 35-47.
[50]
Murray HH, Lyons SC (1960) Further correlation of kaolinite crystallinity with chemical and physical properties. Clays Clay Miner 8: 11-17.
[51]
Sun J, Wang F, Sui Y, She Z, Zhai W, Wang C, Deng Y. (2012) Effect of particle size on solubility, dissolution rate, and oral bioavailability: Evaluation using coenzyme Q10 as naked nanocrystals. Int J. Nanomed 7: 5733-5744.
[52]
Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, Cho JM, Yun G, Lee J. (2014) Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci 9: 304-316.
[53]
Buckton G, Beezer AE. (1992) The relationship between particle size and solubility. Int J Pharmaceutics 82: R7-R10.
[54]
Stuart BH. (2004) Infrared spectroscopy: Fundamentals and applications in Analytical Techniques in the Sciences. John Wiley & Sons Ltd., Chichester, UK.
[55]
Hesse M, Meier H, Zeeh B. (1997) Spectroscopic methods in organic chemistry, Georg Thieme Verlag Stuttgart, New York.
[56]
Bajaj S, Singla D, Sakhuja N. (2012) Stability testing of pharmaceutical products. J App Pharm Sci 2: 129-138.
Browse journals by subject