Volume 7, Issue 3, September 2019, Page: 58-64
Adsorption, Kinetic and Thermodynamic Studies for Mercury Extraction from Water Samples Using Mesoporous Silica
Salah Ali Mahgoub Idris, Chemistry Department, Faculty of Science, University of Tobruk, Tobruk, Libya
Received: Aug. 15, 2019;       Accepted: Sep. 9, 2019;       Published: Sep. 29, 2019
DOI: 10.11648/j.mc.20190703.13      View  91      Downloads  14
Abstract
Mercury is recognized internationally as an important pollutant since mercury and its compounds are persistent, bioaccumulative and toxic, and pose human and ecosystem risks. A critical aspect of mercury cycling is its bioaccumulation, mainly as methylmercury, along the contaminated water with mercury resulting in high risk of human. Adsorption of mercury from water samples on mesoporous silica, mercaptopropyl functionalysed-SBA-15 (MP-SBA-15) and diethylenetriamine functionalysed-SBA-15 (DETA-SBA-15) has been studied. SBA-15 was prepared by using Pluronic P123, PEO20PPO70PEO20 and tetraethylorthosilicate. Surface modification of SBA-15 was carried out by MP-TMS or DETA-TMS to produce MP-SBA-15 or DETA-SBA-15, respectively. SBA-15 and functionalised SBA-15 materials were characterised for BET surface area, pore size and pore volume. The adsorption kinetics and adsorption isotherms of functionalised SBA-15 for mercury were investigated. Results revealed that the adsorption kinetics were fitted by a pseudo-second-order reaction model and the adsorption thermodynamic parameters ΔH°, ΔS° and ΔE° were 42.08 kJ/mol, 210.3 J/mol.K and 7.20 kJ/mol, respectively for DETA-SBA-15; 101.85 kJ/mol, 397.7 J/mol.K and 23.28 kJ/mol, respectively for MP-SBA-15. Langmuir and Freundlich isotherm models were also applied to analyse the experimental data and to predict the relevant isotherm parameters. The best interpretation for the experimental data was given by the Langmuir isotherm equation. The results indicate that the structure of the materials affects the adsorption behavior. These materials show a potential for the application as effective and selective adsorbents for Hg(II) removal from water.
Keywords
Mercury Sorption, Mesoporous Silica, Sorption Kinetics, Sorption Thermodynamic, Equilibrium Isotherms
To cite this article
Salah Ali Mahgoub Idris, Adsorption, Kinetic and Thermodynamic Studies for Mercury Extraction from Water Samples Using Mesoporous Silica, Modern Chemistry. Vol. 7, No. 3, 2019, pp. 58-64. doi: 10.11648/j.mc.20190703.13
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
L. A. Belyakova, O. M. Shvets, D. Y. e. Lyashenko, Inorganica Chimica Acta, 362 (2009) 2222-2230.
[2]
I. M. M. Kenawy, Y. G. Abou El-Reash, M. M. Hassanien, N. R. Alnagar, W. I. Mortada, Microporous and Mesoporous Materials, 258 (2018) 217-227.
[3]
J. Lu, X. Wu, Y. Li, W. Cui, Y. Liang, Surfaces and Interfaces, 12 (2018) 108-115.
[4]
Y. Fu, J. Jiang, Z. Chen, S. Ying, J. Wang, J. Hu, Journal of Molecular Liquids, 286 (2019) 110746.
[5]
USEPA, National Primary DrinkingWater Standards, Report EPA/625/R-97/004, in, Washington DC, 2001.
[6]
J. Takahashi, K. Watanuki, S. Kubota, O. Wada, Y. Arikawa, S. Naito, S. Monma, T. Hirato, An Encyclopedia of Water, in, Maruzen Publishing Co., Tokyo, 2001.
[7]
C. Foster, J. Wase, Biosorbents for Metal Ions, Taylor & Francis, New York, 1997.
[8]
Y. Fu, Y. Sun, Z. Chen, S. Ying, J. Wang, J. Hu, Science of The Total Environment, 691 (2019) 664-674.
[9]
A. A. Khan, Inamuddin, Sensors and Actuators B: Chemical, 120 (2006) 10-18.
[10]
Z. Li, Q. Wei, R. Yuan, X. Zhou, H. Liu, H. Shan, Q. Song, Talanta, 71 (2007) 68-72.
[11]
X. Lu, J. Jiang, K. Sun, J. Wang, Y. Zhang, Marine Pollution Bulletin, 78 (2014) 69-76.
[12]
J. Zhou, X. Feng, H. Liu, H. Zhang, X. Fu, Z. Bao, X. Wang, Y. Zhang, Atmospheric Environment, 81 (2013) 364-372.
[13]
K. Chakrabarty, P. Saha, A. K. Ghoshal, Journal of Membrane Science, 350 (2010) 395-401.
[14]
S. A. Idris, S. R. Harvey, L. T. Gibson, Journal of Hazardous Materials, 193 (2011) 171-176.
[15]
M. Shafiabadi, A. Dashti, H.-A. Tayebi, Synthetic Metals, 212 (2016) 154-160.
[16]
S. A. Idris, C. Robertson, M. A. Morris, L. T. Gibson, Analytical Methods, 2 (2010) 1803-1809.
[17]
I. Langmuir, J. Am. Chem. Soc., 40 (1918) 1361-1403.
[18]
J.-u.-R. Memon, S. Q. Memon, M. I. Bhanger, M. Y. Khuhawar, J. Hazard. Mater., 163 (2009) 511-516.
[19]
G. Purna Chandra Rao, S. Satyaveni, A. Ramesh, K. Seshaiah, K. S. N. Murthy, N. V. Choudary, Journal of Environmental Management, 81 (2006) 265-272.
[20]
G. Zolfaghari, A. Esmaili-Sari, M. Anbia, H. Younesi, S. Amirmahmoodi, A. Ghafari-Nazari, Journal of Hazardous Materials, 192 (2011) 1046-1055.
[21]
T. Y. Guo, Y. Q. Xia, G. J. Hao, M. D. Song, B. H. Zhang, Biomaterials, 25 (2004) 5905-5912.
[22]
J. Pan, X. Zou, X. Wang, W. Guan, Y. Yan, J. Han, Chem. Eng. J. (Lausanne), 162 (2010) 910-918.
[23]
S. Lagergren, Handlingar, 24 (1898) 1-39.
[24]
Y. Ho, G. McKay, D. Wase, C. Foster, Adsorption Science and Technology 18 (2000) 639-650.
[25]
S. Srivastava, R. Tygir, N. Pant, Water Res., 23 (1989) 1161-1165.
[26]
W. Weber, J. Morris, Am. Soc. Civ. Eng., 89 (1963) 31-60.
[27]
T. Wajima, K. Sugawara, Fuel Processing Technology, 92 (2011) 1322-1327.
[28]
D. Pérez-Quintanilla, I. d. Hierro, M. Fajardo, I. Sierra, J. Hazard. Mater., 134 (2006) 245-256.
[29]
J. Coates, Interpretation of Infrared Spectra, A Practical Approach, in: Encyclopedia of Analytical Chemistry, John Wiley & Sons, Ltd, 2006.
[30]
Y.-S. Ho, W.-T. Chiu, C.-S. Hsu, C.-T. Huang, Hydrometallurgy, 73 (2004) 55-61.
[31]
Y.-S. Ho, Water Research, 37 (2003) 2323-2330.
[32]
S. Hong, C. Wen, J. He, F. Gan, Y.-S. Ho, Journal of Hazardous Materials, 167 (2009) 630-633.
[33]
Y. Sağ, Y. Aktay, Process Biochemistry, 36 (2001) 1187-1197.
Browse journals by subject